Here are some notes I find useful for using LaTex
- Force limits to the top and bottom side of inline sum : \(\sum\limits_{i=1}^{N} i\), use \sum\limits instead of \sum alone.
- Force limits to the top and bottom side of inline integral : \(\int \limits_{x=1}^{3} xdx\), use \int\limits instead of \int alone.
- Hat:
- Fitted value: \(\hat{y}\), use \hat{}
- Widehat: \(\widehat{\nabla f }\), use \widehat{}
- Italic: \(\mathcal{L}\), it only works for upper-case letters, use \mathcal{}
- Underset: \(\underset{x}{argmin}\), use \underset{x}{argmin}
- Gradient: \(\nabla f\), use \nabla
- Field representation: the complex field \(\mathbb{C}\), the real field \(\mathbb{R}\), use \mathbb{}
- Logical operator
- P and Q: \(P \land Q\), \land
- P or Q: \(P \lor Q\), \lor
- not P: \(\neg P\), \neg, or \(\bar P\), \bar
- P xor Q: \(P \oplus Q\), \oplus
- Set notation
- \(\mathbb{R}\): \mathbb{R}
- \(a \in A\): a \in A
- \(a \notin A\): a \notin A
- \(\emptyset\): \emptyset
- \(A \cap B\): \cap
- \(A \cup B\): \cup
- \(A \times B\): \times
- \(A \setminus B\): \setminus
- \(A \subseteq B\): \subseteq
- \(A \subset B\): \subset
- \(\bigcup\limits_{i = 1}^{n}\) \bigcup\limits_{i = 1}^{n}
- \(\bigcap\limits_{i = 1}^{n}\) \bigcap\limits_{i = 1}^{n}
- Make equation smaller: \scriptstyle
- Isomorphism and approximate equality
- \(G_1 \cong G_2\): G_1 \cong G_2
- \(a \approx b\): a \approx b
- \(a \approxeq b\): a \approxeq b